home 首页 CdKey兑换 升级为VIP □ 登录

编程 设计 标签墙 帮助

sear

Extreme Optimization Numerical Libraries for .NET v8.1.9 (12 Sep 2022) + CRACK

2024-12-29 08:31:03 label 我要反馈 下载页面

The Extreme Optimization Numerical Libraries for .NET are an assortment of general-purpose mathematical and statistical classes designed specifically for Microsoft's Microsoft .NET Framework.

Extreme Optimization Numerical Libraries for .NET is a collection of general-purpose math and statistical courses. It is a complete statistical and technical computing platform built on the Microsoft .NET platform. It includes the math library, vector and matrix library, and a statistics library in a straightforward package.

Extreme Optimization Numerical Libraries for .NET Great Features:

- · Easy to use even for the mathematically not-so-inclined.
- Excellent performance through optimized implementation of the best algorithms.
- · Powerful enough to satisfy the most demanding power user.
- Intuitive object model. The objects in the Extreme Optimization Numerical Libraries for .NET and the relationships between them match our everyday concepts.
- Cross-platform. Works out-of-the-box on 32 and 64-bit platforms, .NET versions 1.1, 2.0, 3.0, and 3.5.
- General
 - · Machine floating-point constants.
 - Common mathematical constants.
 - o It extended elementary functions.
 - Algorithm support functions: iteration, tolerance, convergence tests.
- Complex numbers
 - o Double-precision complex number value type.
 - Overloaded operators for all arithmetic operations.
 - Static operator functions for languages that don't support operator overloading.
 - o Extension of functions in the System. Math to the complex argument.
 - Support for complex infinity and complex Not-a-Number (NaN).
 - Complex vector and matrix classes.
- · Numerical integration and differentiation
 - · Numerical differentiation.
 - o Numerical integration using Simpson's rule and Romberg's method.
 - o Non-adaptive Gauss-Kronrod numerical integrator.
 - Adaptive Gauss-Kronrod numerical integrator.
 - Integration over infinite intervals.
 - o Optimizations for functions with singularities and discontinuities.
 - o Six integration rules to choose from, or provide your own.
 - Integration in 2 or more dimensions.
- · Curve fitting and interpolation
 - Interpolation using polynomials, cubic splines, piecewise constant, and linear curves.
 - Linear least squares fit using polynomials or arbitrary functions.
 - o Nonlinear least squares using predefined functions or your own.
 - Predefined nonlinear curves: exponential, rational, Gaussian, Lorentz, 4 and 5 parameter logistic.
 - I weighted least squares with four predefined weight functions.
 - I am scaling curve parameters.
 - · Constraints on curve parameters.
- Curves
 - An object-oriented approach to working with mathematical curves.

- o Methods for: evaluation, derivative, definite integral, tangent, roots.
- Many basic types of curves: constants, lines, quadratics, polynomials, cubic splines, Chebyshev approximations, and linear combinations of arbitrary functions.

Solving equations

- Real and complex roots of polynomials.
- o Roots of arbitrary functions: bisection, false positive, Dekker-Brent, and Newton-Raphson methods.
- Systems of simultaneous linear equations.
- Systems of nonlinear equations: Powell's hybrid 'dogleg' method, Newton's method.
- · Least squares solutions.

Optimization

- o Optimization in 1 dimension: Brent's algorithm, Golden Section search.
- The quasi-Newton method in N dimensions: BFGS and DFP variants.
- o Conjugate gradient method in N dimensions: Fletcher-Reeves and Polak-Ribière variants.
- Powell's conjugate gradient method.
- o Downhill Simplex method of Nelder and Mead.
- Levenberg-Marquardt method for nonlinear least squares.
- Line search algorithms: Moré-Thuente, quadratic, unit.
- o Linear program solver: Based on the Revised Simplex method.
- Linear program solver: Import from MPS files.

• Signal processing

- Accurate 1D and 2D Fast Fourier Transform.
- Complex 2D Fast Fourier Transform.
- Unique code for factors 2, 3, 4, and 5.
- · Real and complex convolution.
- Managed 32bit and 64bit native implementations.

· Special functions

- o Over 40 special functions are not included in the standard .NET Framework class library.
- o Functions from combinatorics: factorial, combinations, variations, and more.
- Functions from number theory: greatest common divisor, least common multiple, decomposition into prime factors, primality testing.
- o Gamma and related functions include incomplete and regularized digamma, beta, and harmonic numbers.
- o Hyperbolic and inverse hyperbolic functions for real and complex numbers.
- o Ordinary and Modified Bessel functions of the first and second kind.
- Airy functions and their derivatives.
- o Exponential integral, sine and cosine integral, and logarithmic integral.

General

- Single, double, or quad precision absolute or complex components.
- Based on standard BLAS and LAPACK routines.
- o 100% managed implementation for security, portability, and small sizes.
- · Native, processor-optimized implementation for speed with large sizes based on the Intel® Math Kernel Library.
- Native 64bit support.

• GPU computing

- $\circ~$ GPU computing: offload computations to the GPU.
- o Data is kept on the GPU as long as possible for optimal performance.

Vectors

- Dense vectors.
- Band vectors.
- Constant vectors.
- Row, column, and diagonal vectors.
- Vector views.

Vector Operations

- Basic arithmetic operations.
- Element-wise operations.
- They overloaded arithmetic operators.
- Norms, dot products.
- Most significant and smallest values.
- Functions of vectors (sine, cosine, etc.)

Matrices

- o General matrices.
- o Triangular matrices.
- Real symmetric matrices and complex Hermitian matrices.
- Band matrices.
- Diagonal matrices.
- Matrix views.

Matrix Operations

- Basic arithmetic operations.
- o Matrix-vector products.
- They overloaded arithmetic operations.
- Element-wise operations.
- Row and column scaling.
- Norms, rank, condition numbers

- Singular values, eigenvalues, and eigenvectors.
- Matrix Decompositions
 - · LU decomposition.
 - QR decomposition.
 - o Cholesky decomposition.
 - o Singular value decomposition.
 - Symmetric eigenvalue decomposition.
 - Non-symmetric eigenvalue decomposition.
 - O Banded LU and Cholesky decomposition.
- Sparse Matrices
 - Sparse vectors.
 - o Sparse matrices.
 - o Matrices in Compressed Sparse Column format.
 - Sparse LU Decomposition.
 - · Read matrices in Matrix Market format.
- · Linear equations and least squares
 - Shared API for matrices and decompositions.
 - o Determinants, inverses, numerical rank, condition numbers.
 - Solve equations with one or multiple right-hand sides.
 - Least squares solutions using QR or Singular Value Decomposition.
 - o Moore-Penrose Pseudo-inverse.
 - Non-negative least squares (NNLS).
- · Descriptive Statistics
 - Measures of central tendency: mean, median, trimmed mean, harmonic mean, geometric mean.
 - Measures of scale: variance, standard deviation, range, interquartile range, absolute deviation from mean and median.
 - Higher moments: skewness, kurtosis.
- Probability Distributions
 - Probability density function (PDF).
 - · Cumulative distribution function (CDF).
 - Percentile or inverse cumulative distribution function.
 - o Moments: mean, variance, skewness, and kurtosis.
 - Generate random samples from any distribution.
 - o Parameter estimation for selected distributions.
- Continuous Probability Distributions
 - o Beta distribution.
 - Cauchy distribution.
 - o Chi-squared distribution.
 - Erlang distribution.
 - o Exponential distribution.
 - F distribution.
 - o Gamma distribution.
 - You generalized Pareto distribution.
 - Gumbel distribution.
 - Laplace distribution.
 - Logistic distribution.
 - Lognormal distribution.
 - Normal distribution.
 - Pareto distribution.
 - Piecewise distribution.
 - Rayleigh distribution.
 - Student t distribution.
 - She transformed beta distribution.
 - She transformed gamma distribution.
 - Triangular distribution.
 - Uniform distribution.
 - Weibull distribution.
- Discrete Probability Distributions
 - Bernoulli distribution.
 - Binomial distribution.
 - Geometric distribution.
 - Hypergeometric distribution.
 - Negative binomial distribution.
 - o Poisson distribution.
 - o Uniform distribution.
- Multivariate Probability Distributions
 - Multivariate normal distribution.
 - Dirichlet distribution.
- Histograms
 - One-dimensional histograms.
 - Probability distribution associated with a histogram.

- General Linear Models
 - Infrastructure for General Linear Model and Generalized Linear Model calculations.
 - Analysis of variance.
 - Regression analysis.
 - Model-specific hypothesis tests.
- · Analysis of variance (ANOVA)
 - One and two-way ANOVA.
 - one-way ANOVA with repeated measures.
- · Regression analysis
 - Simple, multiple, and polynomial regression.
 - Nonlinear regression.
 - o Logistic regression.
 - You generalized linear models.
 - Flexible regression models.
 - · Variance-covariance matrix, regression matrix.
 - o Confidence intervals and significance tests for regression parameters.
- Time series analysis
 - Treat several observation variables as a unit.
 - Change the frequency of the time series.
 - Automatically apply predefined aggregators.
 - Advanced aggregators: volume weighted average.
- Transformations of Time Series Data
 - o It lagged time series, sums, and products.
 - o Change, percent change, growth rate.
 - Extrapolated change, percent change, growth rate.
 - Period-to-date sums and differences.
 - o Simple, exponential, weighted moving average.
 - Savitsky-Golay smoothing.
- Multivariate Models
 - Principal Component Analysis (PCA).
 - · Hierarchical clustering.
 - · K-means clustering.
- Statistical tests
 - ⋄ Tests for the mean: one sample z-test, one sample t-test.
 - Paired and unpaired two-sample t-test for the difference between two sample means.
 - Two Sample z-test for ratios.
 - o One sample chi-squared test for variance.
 - F-test for the ratio of two variances.
 - One and two sample Kolmogorov-Smirnov test.
 - Anderson-Darling test for normality.
 - o Chi-squared goodness-of-fit test.
 - Bartlett and Levene tests for homogeneity of variances.
 - McNemar and Stuart-Maxwell test.
- Random number generation
 - Ompatible with the .NET Framework's System.Random.
 - Four generators with varying quality, period, and speed to suit your application.
 - Generate random samples from any distribution.
 - Fauré and Halton sequences.
 - Shufflers and randomized enumerators.

资源列表

download Extreme Optimization Numerical Libraries for .NET v8.1.9 (12 Sep 2022)

产品数量

已有 42647个

付费会员

已有 1676位

价值评估

商业价值约 Y6635.87万元

下载数量

已下载 222908次